An Equation-Based Parallel Column Model

Jingsong Zhou, Harry Kooijman, and Ross Taylor

Department of Chemical and Biomolecular Engineering Clarkson University Potsdam, NY 13699

10/26/2017

Dividing Wall Columns: Not New Anymore

DWCs with three products

Dejanović, I., Matijašević, L., & Olujić, Ž. (2010). Dividing wall column—a breakthrough towards sustainable distilling. *Chemical Engineering and Processing: Process Intensification*, **49**(6), 559-580.

DWCs with more than three products

Kaibel, B. Dividing-Wall Columns, in Distillation: Equipment and Processes pp 183–199, Academic Press, 2014

Dividing Wall Columns: Not New Anymore

- Dejanović, I., Matijašević, L. & Olujić, Ž. Dividing wall column—a breakthrough towards sustainable distilling. *Chem. Eng. Process. Process Intensif.* 49, 5 pp 59–580, 2010
- Yildirim, Ö, Kiss, A.A., Kenig, E.Y., Dividing wall columns in chemical process industry: A review on current activities, *Separation and Purification Technology*, 80, pp 403-417, 2011
- Kiss, Anton A. Advanced distillation technologies: design, control and applications. John Wiley & Sons, 2013.
- Kaibel, B. Dividing-Wall Columns, in *Distillation: Equipment and Processes* pp 183–199, Academic Press, 2014

Clarkson UNIVERSITY *defy* convention

Dejanović et al. (2010) wrote:

Carrying out DWC performance simulations **requires great experience** and these are more or less computationally very demanding. ... well established commercial software packages still do not contain a DWC as a standard model. This however will occur sooner or later, most probably as a *simultaneous, equation based model*.

Kaibel (2014) wrote:

Due to the potential variability of complex internal configurations, there is no dedicated software package for this purpose. ... As there are strong interactions between the parameters, a rather stiff system of equations has to be solved. The convergence behavior of programs with sequential operation is sometimes problematic. Equation-based programs normally show better convergence characteristics.

But, so far, nobody has provided any evidence that that is true!

Introduction

- Existing simulation strategies and challenges
- An equation-based parallel column model
- Examples
- Validation with Pilot DWC Data
- Conclusions
- Coming soon...

Existing Simulation Strategy

Dejanović et al. Aromatics DWC

Dejanovic, I., Matijašević, L., Jansen, H., & Olujic, Z. (2011). Designing a packed dividing wall column for an aromatics processing plant. *Industrial & Engineering Chemistry Research*, **50**(9), 5680-5692.

Existing Simulation Strategy

Dejanović et al. Aromatics DWC

Dejanovic, I., Matijašević, L., Jansen, H., & Olujic, Z. (2011). Designing a packed dividing wall column for an aromatics processing plant. *Industrial & Engineering Chemistry Research*, **50**(9), 5680-5692.

Dejanović et al. Aromatics DWC

Four-column model in UNISIM Design

Dejanović et al. Aromatics DWC

Four-column model in COCO

Dejanović et al. Aromatics DWC

Two-column model

Dejanović et al. Aromatics DWC

Two-column model in COCO

13

Satellite Column Schematic

Tututi-Avila, S., Domínguez-Díaz, L. A., Medina-Herrera, N., Jiménez-Gutiérrez, A., & Hahn, J. (2017). Dividing-wall columns: Design and control of a kaibel and a satellite distillation column for BTX separation. *Chemical Engineering and Processing: Process Intensification*, **114**, 1-15.

Satellite Column Schematic

Satellite Column System in UNISIM Design

Ashrafian, R. (2014). Using Dividing Wall Columns (DWC) in LNG Production: deviding wall column, double dividing wall column, prefractionator arrangement, Petlyuk column, NGL recovery, distillation (Master's thesis, Institutt for energi-og prosessteknikk).

Multiple Wall Column

Multiple Wall Column in UNISIM Design

Ashrafian, R. (2014). Using Dividing Wall Columns (DWC) in LNG Production: deviding wall column, double dividing wall column, prefractionator arrangement, Petlyuk column, NGL recovery, distillation (Master's thesis, Institutt for energi-og prosessteknikk).

Dai, X., Ye, Q., Qin, J., Yu, H., Suo, X., & Li, R. (2016). Energy-saving dividing-wall column design and control for benzene extraction distillation via mixed entrainer. *Chemical Engineering and Processing: Process Intensification*, **100**, 49-64.

Divided Top Column in COCO

Divided Top Column in UNISIM Design (No convergence)

Considerable effort needed to set up a multi-column model

- Difficult to provide adequate initial guesses of linking streams
- Slow, no, or false convergence
- Some desirable specifications cannot be used (e.g. recovery)

MESH equations:

M: Material balance

$$M_{ij} \equiv L_{j-1}x_{i,j-1} + V_{j+1}y_{i,j+1} + F_j z_{ij} - (L_j + U_j)x_{ij} - (V_j + W_j)y_{ij} = 0$$

H: Energy balance

 $H_{j} \equiv L_{j-1}H_{j-1}^{L} + V_{j+1}H_{j+1}^{V} + F_{j}H_{j}^{F} - (V_{j} + W_{j})H_{j}^{V} - (L_{j} + U_{j})H_{j}^{L} - Q_{j} = 0$

Phase	From Stage	To Stage	Split Ratio	
	27	28	0.5	
1 *******		50	0.5	28 50
Liquid	49	50	0	
		72	1.0	$\xrightarrow{\text{Feed}}_{37} \xrightarrow{61} B$
	72	49	0.5	
Maraan		71	0.5	49 71
vapor	50	49	0	87
		27	1.0	
		24		$\smile \bigcirc_{88} \rightarrow C$

Equation-Based Parallel Column Model

All equations for all stages solved simultaneously

Dejanović et al. Aromatics DWC

Equation-based ChemSep PCM

Equation-Based Model

Dejanović et al. Aromatics DWC Modelled Using ChemSep PCM

Satellite Column System

Kaibel Column

Equation-based ChemSep PCM

COCO (false solution)

ChemSep PCM (correct solution)

Temperature gradient across wall can be significant

Dividing walls are not insulators

Dividing walls are not insulators

Extremely difficult to include heat transfer in multi-column models

Requires many energy interlinks

Heat Transfer

Dividing walls are not insulators

Extremely difficult to include heat transfer in multi-column models

Very easy to include heat transfer in Parallel Column Model

Terms added to energy balance

$$Q_j = U \cdot A_j \cdot \Delta T_j$$

U – Overall heat transfer coefficient

- A_i Heat transfer area on stage j
- ΔT_j Temperature difference

System: n-pentane, n-hexane, and n-heptane

38

 $U_{wall} = 800 \text{ W/m}^2\text{K}$

Heat Transfer

Heat Transfer

Heat transfer affects product purity

What if U_{wall} goes to infinity...?

Compared to multi-column models, the ChemSep PCM

- Takes very little effort to set up
- Requires no initial guesses from engineer
- Converges much quicker
- Converges to the correct solution when other simulators fail
- Makes it easy to model heat transfer across the wall

Coming Soon...

Rate-based Parallel Column Model

Other Uses for a PCM...

Crude Column Systems

Redistributors modeled as stages with no mass transfer