

ChemSep Tutorial: Absorber Case Study

Ross Taylor and Harry Kooijman

Here we consider the modeling of an absorption column using *ChemSep*. The following tutorials are included below:

- 1. Setting up a simple absorption column (this is Example 8.2 in *Multistage Separation Processes*, by F.M. Khoury (Prentice-Hall, 1999)
- 2. Using the Parametric Study option in *ChemSep* to investigate the influence of the solvent flow rate (this is a continuation of Example 8.2 from the book by Khoury)
- 3. Using the Parametric Study option in *ChemSep* to investigate the influence of the number of stages (this is Example 8.3 in the book by Khoury)

Tutorial 1: Absorption of Propane by n-Dodecane

Dodecane is to be used as the solvent in an absorption process to recover propane (and any heavier components present) from a gas mixture. Both feed streams and the column (which has 10 stages) are at a pressure of 400 psia; in addition, the feeds are at a temperature of 100 °F. The components and their respective feed rates are summarized in Table 1 (which also includes the results obtained by Khoury).

Table 1: Absorber Stream Flows: Feed Specifications and Predicted Products

Stream	LeanOil	RichGas	Тор	Bottom
Stage	1	10	10	10
Pressure (psia)	400	400	400	400
Vapour fraction (-)	0	1	1	0
Temperature (oF)	100	100	106.1	117.8
Mole flows (mol/h)				
Nitrogen	0	20	19.4	0.6
Methane	0	800	722.8	77.2
Ethane	0	80	48.5	31.5
Propane	0	70	3.3	66.7
N-butane	0	20	0	20
N-pentane	0	20	0	10
N-dodecane	500	0	0	499.9
Total molar flow	500	1000	794.1	706.9

We begin by clicking on the Components Panel and selecting the components that are listed in Table 1.

Next, select the **Operation** tab and choose **Equilibrium Column**. Complete the specification of the column configuration as shown in the screen shot below:

f ChemSep - Khoury8_	2.sep	<u>- 🗆 ×</u>
<u>File E</u> dit <u>S</u> olve <u>A</u> nalysi:	s <u>D</u> atabanks <u>T</u> ools <u>H</u> elp	
🗋 🖻 🖬 🕨 🍣 🔶		
Title	✓ Operation	
Components Properties	Select Type of Simulation	
 I hermodynamic: Physical properties 	Equilibrium column	
Beactions		
Feeds	U Uynamic column	
🖻 🗸 Specifications	Column Configuration	
🚽 🗸 Analysis	Describer Circle Abasebas (Chinese Pri	
Pressures		
Heaters/Coolers	Condenser: None Click here to specify the column type Top	
 Efficiencies Column appaillant 		
	Reboiler: None	
Tables		
Graphs	Number of stages (e.g. 10)	
McCabe-Thiele	Feed stage(s) (e.g. 5.7)	
- Rating		
Solve options	Sidestream stage(s) (e.g. 2,9)	
Paths	BichGas 10 10	
	Pumparound(s) (e.g. 6>8, 9>1)	
	Bottom	
		_
•		
Saved Converged 6	; iterations C:\ChemSep_\Sep_Files\StandardTest\Khoury\Khoury8_2.sep	
· · · · · · · · · · · · · · · · · · ·		111

The next step is to select the appropriate thermodynamic models. Khoury does not tell us what model he used in his example calculations; we use the Peng-Robinson Equation of State for the estimation of both the K-values and the enthalpy.

The next step is to provide the details of the two feeds. Click on the **Feeds** line and complete the feeds panel so that it appears as it does in the screen shot below:

Insert Re	move	Molar flows
		,
Feed:	1	2
Name	LeanOil	RichGas
Stage	1	10
Two-phase feed	Split	Split-below
State	Т&р	Т&р
Pressure (psia)	400.000	400.000
Vapour fraction (-)		
Temperature (oF)	100.000	100.000
Flowrates (mol/h):		
Nitrogen	0.000000	20.0000
Methane	0.000000	800.000
Ethane	0.000000	80.0000
Propane	0.000000	70.0000
N-butane	0.000000	20.0000
N-pentane	0.000000	10.0000
N-dodecane	500.000	0.000000
Total flowrate	500.000	1000.00

The column pressures are specified as shown below:

The column specifications are completed by setting the heat losses to zero and the default efficiency to one.

The next step is to save the file (using the **File** menu – note that the file name appears on the blue bar at the top of the ChemSep window) and then click on the green arrow head icon to start the calculations.

This will bring up the solve window – which looks like this:

Determining fea Solving TP flas	ed conditions h			
Generating initi	al flow profiles			
Generatin	·			
g initial compos	ition profiles			
lnit 30 m	illiseconds			
Starting Newto	ns method			
Utrl-Break will to	erminate execution			
Iteration	Error			
0	2.5538E+00			
ī	3.8482E-02			
2	8.2445E-03			
3	8.1885E-04			
4	2.7009E-04			
5				
1.35	U5E-U4			
_ Ь	1.3282E-09			
Lonvergence (Time 120	Ditained in 6 iterations			
Findern driver /	Inniiseconas			
Process ended	9010			
4				
<u> </u>				
		(

Click on **Done** to close the window and bring up the results panel.

┨ ChemSep - Khoury8_	_2.sep	
<u>File E</u> dit <u>S</u> olve <u>A</u> nalysi	is <u>D</u> atabanks <u>T</u> ools <u>H</u> elp	
🕒 🖻 🖬 🕨 🥭 🌗		
Title Components Operation Properties Thermodynamic:	Tables Graphs McCabe-Thiele Rating Tables Select table: Streams XL Edit Copy Font Print	
Pressures Pressures	Stream Lean0il RichGas Top Bottom Stage 1 10 1 10 Pressure (psia) 400.000 400.000 400.000 400.000 Vapour fraction (-) 0.000000 1.00000 1.00000 0.000000 Temperature (oF) 100.000 100.000 166.394 118.459 Enthalpy (J/kmol) -5.312E+07 -194645 100933 -3.796E+07 Entropy (J/kmol/K) -111459 -20944.6 -23532.4 -80209.9 Mole flows (mol/h) Nitrogen 0.000000 79.9999 721.518 78.4813 Ethane 0.000000 79.9999 48.6892 31.3107 Propane 0.000000 20.0000 1.3618E-04 19.9999 N-butane 0.000000 20.0000 1.3618E-04 19.9999 N-butane 0.000000 0.00000 0.0722171 499.928 Total molar flow 500.000 999.999 793.062 706.937 Mole fractions (-) 0.000000 <td< td=""><td></td></td<>	
Saved Converged 6	6 iterations C:\ChemSep_\Sep_Files\StandardTest\Khoury\Khoury8_2.sep	_//.

The results shown above are close to those reported by Khoury (see Table 1). Remember that Khoury does not tell us what thermodynamic model he used so the close agreement can be considered to be quite satisfactory.

Tutorial 2: Effect of Solvent Flow Rate on Component Recovery

This tutorial continues with Example 8.2 from Khoury in which he investigates the effect of the solvent flow rate on the propane recovery. This is a question that can best be answered using the Parametric Study option of *ChemSep*.

Click on the **Analysis** menu and select **Parametric Study**. This will bring up a window that looks like this:

T Parametric Study
Select input variables
Number of steps 11 🔽 Use old results 🔽 Automatic 🔽 Keep sep-files 🔽 Restore original
Add Delete Reset
Name Variable Units Value Start/Valuelist End
Select result variables Add Delete Reset
Name Variable Units Current Value
Results Run Plot Copy data XL Graph Edit Plot No results
Close

Click on the drop down list next to **Add** near the top of this window. Scroll down and select the LeanOil flow:

Fill in the values of the solvent flows that will be investigated (they are 25, 100, 300, 600, 750, 1000, and 5000 mol/h). Type in the number of simulations that will cover this range in the box next to **Number of steps**.

Add Delete Reset	Select input variabl Number of steps	es 🔽 🗖	Use old results	☑ Automatic	Keep sep-files	E 🔽 Restore original
Name Variable Units Value Start/Valuelist End	Add			▼ De	lete F	Reset
U aan Oil tatal flavi E1ET I mal //a 1200,0000 25, 100, 200, 60,2000	Name Lean Oil total flow	Variable	Units	Value	Start/Valuelist	End

The next task is to select the output variables of interest. If we click on the drop down list under **Select result variables** (central section of the parametric study panel) we see a very long list of the possible result variables. We are interested in the recovery of each compound (C1 to C5), but compound recovery is not one of the listed variables. Nevertheless, we can obtain the species recoveries by making use of *ChemSep*'s ability to combine result variables as we now show.

-Select res	ult variables
Add	•
Name Variable Units Current	Stream Bottom vapour fraction=BOTSVF Stream Bottom liquid split ratio=BOTSLF Stream Bottom vapour flowrate (mol/h)=BOTS Stream Bottom liquid flowrate (mol/h)=BOTSL Stream Bottom 2nd liquid flowrate (mol/h)=BO Stream Bottom overall mole fraction #=BOTS2 Stream Bottom liquid fraction #=BOTS2 Stream Bottom liquid fraction #=BOTS2 Vapour enthalpy on stage @ (J/kmol)=HV@ ▼

Start by selecting the mole fraction of methane in the rich oil (Bottoms).

This puts the string BOTSX(#) in the result variable list:

Name	LeanOil total flov	Stream Bottom li
Variable	F1FT	BOTSX(#)
Units	mol/h	
Current Value	299.9999	0

The # sign must be replaced by the number of the component in the component list. Methane is the second component so we can replace the # by 2. This, of course, just means that the mole fraction of methane in the bottoms is recorded, how may we obtain the recovery? The component recovery is defined as the component flow (in the bottoms here) divided by the component flow in the feeds (in this case we need be concerned only with the gas feed). The component flow rate is the component mole fraction multiplied by the total stream flow rate. Thus, the component flow in the bottoms is the mole fraction in the bottoms (already selected as shown above) multiplied by the bottoms flow rate. If we scroll down the list of result variables we see that the bottoms by multiplying the bottoms mole fraction by the bottoms flow rate. To obtain this click in the field that shows BOTSX(#) in the above illustration (it should now be BOTSX(2) and add BOTSL so that the entire string reads BOTSX(2)*BOTSL.

Now we have the component flow rate of methane. To obtain the recovery we need to divide by the component flow rate of methane in the gas feed. Scroll down the list of result variables to find that the component flow of species 1 in the gas feed is F2F1 (where the last digit refers to the component number. We return to the cell of interest and add /F2F2 so that we divide the component flow of methane in the bottoms by the component flow of methane in the gas feed. Ths string now reads: BOTSX(2)*BOTSL/F2F2*100 (the *100 is to convert the recovery to a percentage).

To add the recoveries of the other hydrocarbon compounds we repeat the above steps starting with the selection of the Bottoms mole fraction.

When we have completed this step the central portion of the Parametric Study panel appears as shown below (note that we have also typed in meaningful names in the first cell in each of columns 3 to 7.

Name	LeanOil total flov	C1 Recovery	C2 Recovery	C3 Recovery	n-C4 Recovery	n-C5 Recovery
Variable	F1FT	BOTSX(2)*BOTS	BOTSX(3)*BOTS	BOTSX(4)*BOTS	BOTSX(5)*BOTS	BOTSX(6)*BOTS
Units	mol/h					
Current Value	299.9999	6.050972	23.49231	53.96777	85.01016	96.96105

We now click on the **Run** button in order to fill in the table of results. This will appear in the bottom panel (we have stretched this window in both lateral and vertical directions in order to accommodate the entire table):

Run	Plot	Copy data	XL Graph	Edit Pla	ot	
Step	LeanOil total flov	C1 Recovery	C2 Recovery	C3 Recovery	n-C4 Recovery	n-C5 Recovery
Units	mol/h					
1	25	0.73965	3.136484	9.040213	25.64757	66.91493
2	100.0001	2.309105	9.305969	25.42666	64.11004	99.43123
3	299.9999	6.059105	23.85364	64.04287	99.85631	99.99999
4	600.0012	11.67389	47.09121	98.73702	99.99991	100
5	749.9988	14.46077	59.07566	99.82853	99.99998	99.99999
6	1000.001	19.11014	78.02914	99.9897	99.99999	99.99999
7	5000.004	96.85551	99,99999	100	100	100

Readers of Khoury's book will be able to confirm that the results shown here are in good agreement with his Table 8.4 (and again we note that Khoury does not tell us what thermodynamic model he used).

To display these results graphically we may click on the **Plot** button, but we prefer **Edit Plot** because that choice allows us to customize the plot as shown below:

Plot													
Title Labels			Stages		Axis color	Comma	ands B	ж	Labels	box I	mport data		
Parametric Study On			Vertica		Black		0	n	Off				
Axes													
		Title	9	Start	End		Tic interval	Small t	ics G	rid	Logari	thmic	Scientific not
x1		Lean O	il total ()	5100		500	0	0	ff	Off	(Dff
γ1		Recove	ery ()	110		20	0	0	ff	Off	(Dff
x2								0	0	ff	Off	(Dff
γ2								0	0	ff	Off		Dff
Ad Dele	Add set Reset sets Calc.Dev's Save graph Auto Axis Auto colors Black Delete set Save sets Export Delete graph Oversize 0.2 Auto points Diamond												
L	abel	Plot X	Plot '	Y X axis	Y axis	Units) Units \	Color	Points	Thickne	Style	1st st	aLast st
1 C	1 Reco	PS1	PS2	×1	y1	mol∕h		Red	Diamon	Normal	Solid	1	7
2 C	2 Recc	PS1	PS3	×1	y1	mol∕h		Green	+	Normal	Solid	1	7
3 C	3 Recc	PS1	PS4	×1	y1	mol∕h		Blue	Square	Normal	Solid	1	7
4 n	-C4 Re	PS1	PS5	×1	y1	mol∕h		Magenta	×	Normal	Solid	1	7
5 n	-C5 Re	PS1	PS6	×1	y1	mol∕h		d-Blue	Invers	Normal	Solid	1	7

In this example we have changed the default x and y axis titles, as well as the default axis ranges and incidence of tic-marks. The resulting plot is shown in a separate window and is reproduced below:

Khoury also tabulates the mole fraction of C1 to C5 in the overhead vapor. We leave the creation of this table (and appropriate plot) as an exercise for our readers.

Tutorial 3: Effect of Number of Stages on Propane Absorption

We continue this tutorial with Example 8.3 from Khoury which concerns the effect of the number of stages in the propane absorption case considered above. Readers are advised to review Tutorial 2 before this one.

The determination of how the number of stages influences the separation involves another application of the Parametric Study in *ChemSep*. Following Khoury we will determine the separation accomplished by 2, 5, 10, 20, and 40 stages with a lean oil flow rate of 300 mol/h. The first step is to set the lean oil flow rate at 300 mol/h (instead of 500) and change the number of stages from 10 to 2 (strictly speaking this last step is not needed, but we think it wiser to start a parametric study from one end of the range of variables.

We then open the parametric study window and select the appropriate variables. Note that we *must* select both the number of stages *and* the stage number for the gas feed (since that is always to the bottom stage). Both of these variables must be varied in exactly the same way; note the cells containing the stage numbers to be used in this exercise as shown below.

Name	Variable	Units	Value	Start/Valuelist	End
Number of stage	NS		2	2,5,10,20,30,40	40
RichGas stage	F2N		2	2,5,10,20,30,40	40

For output variables we are interested only in the recovery of ethane, propane and butane; we determine these values in the way described in Tutorial 1.

Name	Number of stage	Ethane	Propane	n-Butane
Variable	NS	BOTSX(3)*BOTS	BOTSX(4)*BOTS	BOTSX(5)*BOTS
Units				
Current Value	2	23.49231	53.96777	85.01016

When ready we click on the Run button. On completion of the simulations the results section of the panel should have the following appearance:

Step	Number o	f stage Ethane	Propane	n-Butane
Units				
1	2	23.49231	53.96777	85.01016
2	5	23.92548	62.47694	97.61867
3	10	23.85364	64.04287	99.85631
4	20	23.84811	64.15235	99.99946
5	30	23.84809	64.15285	100
6	40	23.84809	64.15285	100

Once again, readers of Khoury's book will be able to confirm the close agreement between the numbers in his Table 8.5 (page 207) and the results shown above. These results show that the component recoveries reach a constant value after some number of stages that varies from component to component. Note that these results are specific to a lean oil flow rate of 300 mol/hr. Khoury shows (in his Table 8.6) the same sort of behavior (but with different numerical results) for a lean oil flow rate of 600 mol/h. We leave this as an exercise for our readers.